447 research outputs found

    Model-based comprehensive analysis of school closure policies for mitigating influenza epidemics and pandemics

    No full text
    School closure policies are among the non-pharmaceutical measures taken into consideration to mitigate influenza epidemics and pandemics spread. However, a systematic review of the effectiveness of alternative closure policies has yet to emerge. Here we perform a model-based analysis of four types of school closure, ranging from the nationwide closure of all schools at the same time to reactive gradual closure, starting from class-by-class, then grades and finally the whole school. We consider policies based on triggers that are feasible to monitor, such as school absenteeism and national ILI surveillance system. We found that, under specific constraints on the average number of weeks lost per student, reactive school-by-school, gradual, and county-wide closure give comparable outcomes in terms of optimal infection attack rate reduction, peak incidence reduction or peak delay. Optimal implementations generally require short closures of one week each; this duration is long enough to break the transmission chain without leading to unnecessarily long periods of class interruption. Moreover, we found that gradual and county closures may be slightly more easily applicable in practice as they are less sensitive to the value of the excess absenteeism threshold triggering the start of the intervention. These findings suggest that policy makers could consider school closure policies more diffusely as response strategy to influenza epidemics and pandemics, and the fact that some countries already have some experience of gradual or regional closures for seasonal influenza outbreaks demonstrates that logistic and feasibility challenges of school closure strategies can be to some extent overcome

    What are the limits to time series based recognition of semantic concepts?

    Get PDF
    Most concept recognition in visual multimedia is based on relatively simple concepts, things which are present in the image or video. These usually correspond to objects which can be identified in images or individual frames. Yet there is also a need to recognise semantic con- cepts which have a temporal aspect corresponding to activities or com- plex events. These require some form of time series for recognition and also require some individual concepts to be detected so as to utilise their time-varying features, such as co-occurrence and re-occurrence patterns. While results are reported in the literature of using concept detections which are relatively specific and static, there are research questions which remain unanswered. What concept detection accuracies are satisfactory for time series recognition? Can recognition methods perform equally well across various concept detection performances? What affecting factors need to be taken into account when building concept-based high-level event/activity recognitions? In this paper, we conducted experiments to investigate these questions. Results show that though improving concept detection accuracies can enhance the recognition of time series based concepts, they do not need to be very accurate in order to characterize the dynamic evolution of time series if appropriate methods are used. Experimental results also point out the importance of concept selec- tion for time series recognition, which is usually ignored in the current literature

    Municipal Solid Waste treatment by integrated solutions: energy and environmental balances

    Get PDF
    This paper reports a comparison between two scenarios developed in order to manage the municipal solid waste in an area in the North part of Italy. In the proposed scenarios various technological solutions, regarding the selective collection, the energy recovery and the modality of final disposal were taken into account. The comparison was done considering both mass/energy and environmental balance, trying to focus the most suitable solution. The experience can be completed with other scenarios containing different technical solution intermediate between the two considered in this study

    Evaluating Multimedia Features and Fusion for Example-Based Event Detection

    Get PDF
    Multimedia event detection (MED) is a challenging problem because of the heterogeneous content and variable quality found in large collections of Internet videos. To study the value of multimedia features and fusion for representing and learning events from a set of example video clips, we created SESAME, a system for video SEarch with Speed and Accuracy for Multimedia Events. SESAME includes multiple bag-of-words event classifiers based on single data types: low-level visual, motion, and audio features; high-level semantic visual concepts; and automatic speech recognition. Event detection performance was evaluated for each event classifier. The performance of low-level visual and motion features was improved by the use of difference coding. The accuracy of the visual concepts was nearly as strong as that of the low-level visual features. Experiments with a number of fusion methods for combining the event detection scores from these classifiers revealed that simple fusion methods, such as arithmetic mean, perform as well as or better than other, more complex fusion methods. SESAME’s performance in the 2012 TRECVID MED evaluation was one of the best reported

    A combinatorial model of malware diffusion via Bluetooth connections

    Get PDF
    We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.Comment: In press on PlosON

    Evaluating vaccination strategies for reducing infant respiratory syncytial virus infection in low-income settings

    Get PDF
    Background: Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease and related hospitalization of young children in least developed countries. Individuals are repeatedly infected, but it is the first exposure, often in early infancy, that results in the vast majority of severe RSV disease. Unfortunately, due to immunological immaturity, infants are a problematic RSV vaccine target. Several trials are ongoing to identify a suitable candidate vaccine and target group, but no immunization program is yet in place. Methods: In this work, an individual-based model that explicitly accounts for the socio-demographic population structure is developed to investigate RSV transmission patterns in a rural setting of Kenya and to evaluate the potential effectiveness of alternative population targets in reducing RSV infant infection. Results: We find that household transmission is responsible for 39% of infant infections and that school-age children are the main source of infection within the household, causing around 55% of cases. Moreover, assuming a vaccine-induced protection equivalent to that of natural infection, our results show that annual vaccination of students is the only alternative strategy to routine immunization of infants able to trigger a relevant and persistent reduction of infant infection (on average, of 35.6% versus 41.5% in 10 years of vaccination). Interestingly, if vaccination of pregnant women boosts maternal antibody protection in infants by an additional 4 months, RSV infant infection will be reduced by 31.5%. Conclusions: These preliminary evaluations support the efforts to develop vaccines and related strategies that go beyond targeting vaccines to those at highest risk of severe disease
    corecore